Solution:
The reciprocal identities of trigonometry include the identities below
![\begin{gathered} \csc \theta=(1)/(\sin \theta) \\ \sec \theta=(1)/(\cos \theta) \\ \cot \theta=(1)/(\tan \theta) \\ \tan \theta=(1)/(\cot \theta) \\ \cos \theta=(1)/(\sec \theta) \\ \sin \theta=(1)/(\csc \theta) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wqp0djyf0rdp861504v7x9c9zolnlknxq8.png)
The quotient identity include the identities below
![\begin{gathered} \tan \theta=(\sin \theta)/(\cos \theta) \\ \cot \theta=(\cos \theta)/(\sin \theta) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/onm8u1cplf3xy8atq78fhg3zbu30h3fcyv.png)
The sum formula of trigonometric identity include
![\begin{gathered} \sin (\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha\sin \beta \\ \sin (\alpha-\beta)=\sin \alpha\cos \beta-\cos \alpha\sin \beta \\ \cos (\alpha+\beta)=\cos \alpha\cos \beta-\sin \alpha\sin \beta \\ \cos (\alpha-\beta)=\cos \alpha\cos \beta+\sin \alpha\sin \beta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/318gvlqspk3y3hxi82j0ec8hin8sk3hq27.png)
The double-angle formula is given below as
Hence,
The final answer is QUOTIENT IDENTITY