From the Pythagorean Theorem, if a, b and c are the sides of a right triangle, with c being the longest side, then:
![a^2+b^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdnnfwrccw5g60jmi691r5gcz9ekxf8waa.png)
Or, equivalently:
![a^2+b^2-c^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/epw9fyy23tt0hqjeuuop8ynfi3jld37i3d.png)
Find the corresponding values of the second expression for each case. If the result is equal to 0, then those are the sides of a right triangle:
9, 40 and 41
![\begin{gathered} 9^2+40^2-41^2=81+1600-1681 \\ =1681-1681 \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/suxx5f7d6ammcvrau3o8vj50gs6mdn1en7.png)
Then, these are the sides of a right triangle.
11, 60 and 62
![\begin{gathered} 11^2+60^2-62^2=121+3600-3844 \\ =3721-3844 \\ =-123 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3r19f4h9lekreb11kbxgbz3xegv9adgqe5.png)
Then, these are not the sides of a right triangle.
48, 55 and 73
![\begin{gathered} 48^2+55^2-73^2=2304+3025-5329 \\ =5329-5329 \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1zbqit1bip1ntdz1cwiueu4lquyr371093.png)
Then, these are the sides of a right triangle.
Therefore, from the given sets of numbers, the ones that correspond to lengths of sides of a rigtr triangle, are:
![\begin{gathered} 9,40,41 \\ 48,55,73 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qc8fnphruvu5nj5hosyyc34ixn8brw7s57.png)