In this problem, we have an arithmetic sequence with:
• first term a_1 = -22,
,
• common difference r = 5.
The terms of the arithmetic sequence are given by the following relation:
![a_n=a_1+r\cdot(n-1)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/90x3k68nh1xkkt4l363lvra01b37s0mumb.png)
Replacing the values a_1 = -22 and r = 5, we have:
![a_n=-22+5\cdot(n-1)=-22+5n-5=5n-27.](https://img.qammunity.org/2023/formulas/mathematics/college/w679er99nkh37my98kdektwtu1eugghsmg.png)
We must compute the sum of the first 30 terms of the sequence.
The sum of the first N terms of a sequence is:
![\begin{gathered} S=\sum ^N_(n\mathop=1)a_n=\sum ^N_{n\mathop{=}1}(5n-27) \\ =5\cdot\sum ^N_{n\mathop{=}1}n-27\cdot\sum ^N_{n\mathop{=}1}1 \\ =5\cdot(N\cdot(N+1))/(2)-27\cdot N. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/czlzjjiudbbe28in4bsxt55qdgde4zhmze.png)
Where we have used the relations:
![\begin{gathered} \sum ^N_{n\mathop{=}1}n=(N\cdot(N+1))/(2), \\ \sum ^N_{n\mathop{=}1}1=N\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h1mi0cw9ouzsaztqypavclzqiu2gav8fux.png)
Replacing the value N = 30 in the formula for the sum S, we get:
![S=5\cdot(30\cdot31)/(2)-27\cdot30=1515.](https://img.qammunity.org/2023/formulas/mathematics/college/oge7gyxtvw0ejw3nnlo17ultg354b2e7wi.png)
Answer
sum = 1515