44.6k views
3 votes
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x) = 32 2 f () = ( 1 ) 28

POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-2

1 Answer

2 votes

First, we must evaluate each function at the given values of x.

When x=-2, we have


\begin{gathered} f(x)=2^x\Rightarrow f(-2)=2^(-2)=(1)/(2^2)=(1)/(4)=0.25 \\ \end{gathered}
f(x)=((1)/(3))^x\Rightarrow f(-2)=((1)/(3))^(-2)=(1)/(3^(-2))=3^2=9
f(x)=3^x\Rightarrow f(-2)=3^(-2)=(1)/(3^2)=(1)/(9)=0.11
f(x)=((1)/(2))^x\Rightarrow f(-2)=((1)/(2))^(-2)=(1)/(2^(-2))=2^2=4

Now, we must compare these result with the tables. Then the solutions are:

POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
User Gustavo Matias
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories