44.6k views
3 votes
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x) = 32 2 f () = ( 1 ) 28

POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-2

1 Answer

2 votes

First, we must evaluate each function at the given values of x.

When x=-2, we have


\begin{gathered} f(x)=2^x\Rightarrow f(-2)=2^(-2)=(1)/(2^2)=(1)/(4)=0.25 \\ \end{gathered}
f(x)=((1)/(3))^x\Rightarrow f(-2)=((1)/(3))^(-2)=(1)/(3^(-2))=3^2=9
f(x)=3^x\Rightarrow f(-2)=3^(-2)=(1)/(3^2)=(1)/(9)=0.11
f(x)=((1)/(2))^x\Rightarrow f(-2)=((1)/(2))^(-2)=(1)/(2^(-2))=2^2=4

Now, we must compare these result with the tables. Then the solutions are:

POSSIBLE Match the function rule to the table of values. f(x)=2 х f (x) = (3) f(x-example-1
User Gustavo Matias
by
4.1k points