Answer:
1077.19 ft
Step-by-step explanation:
Using the depression angle, we get that one of the angles of the formed triangle is also 18° because they are alternate interior angles, so we get:
Now, we can relate the distance x, the angle of 18°, and the height of the tower using the trigonometric function tangent, so:
![\begin{gathered} \tan 18=(Opposite)/(Adjacent) \\ \tan 18=(350)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ji7u6cxgy2ovqgv24o85cdubrrpvjhund0.png)
Now, solving for x, we get:
![\begin{gathered} x\cdot\tan 18=x\cdot(350)/(x) \\ x\cdot\tan 18=350 \\ (x\cdot\tan18)/(\tan18)=(350)/(\tan 18) \\ x=(350)/(\tan 18) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lch8e9gyysbreilwm9bh5j8ebhiw6xhrx7.png)
Using the calculator, we get that tan(18) = 0.325, so x is equal to:
![x=(350)/(0.325)=1077.19\text{ }ft](https://img.qammunity.org/2023/formulas/mathematics/college/uybzc3wg1ox3llfupsuiw53ckapj116ynl.png)
Therefore, the forest ranger is at 1077.19 ft from the fire.