Answer:
• (a)112 feet
,
• (b)1.28125 seconds.
,
• (c)138.265625 feet.
,
• (d)4.22091 seconds
Explanation:
The height of the rocket in terms of the number of seconds t since the rocket's engine stops firing is given below.
![S\mleft(t\mright)=-16t^2+41t+112](https://img.qammunity.org/2023/formulas/mathematics/college/hz9fxq7qn7ko0m766vbhh0zf6ykslo4wsu.png)
Part A
At the time the rocket stopped firing, t=0.
![S(0)=-16(0)^2+41(0)+112=112](https://img.qammunity.org/2023/formulas/mathematics/college/wpf1q07ua7uwajdg2i0lxlq93oyvckxt10.png)
The rocket was 112 feet above the ground when it stopped firing.
Part B
The value of t at which the rocket reaches its maximum height is the equation of the line of symmetry.
To find this equation, we use the formula below.
![t=-(b)/(2a)=-(41)/(-2*16)=1.28125\text{ seconds}](https://img.qammunity.org/2023/formulas/mathematics/college/np80dccm4281h7ybisos5w5yhelp3ma0nk.png)
The rocket reaches its maximum height after 1.28125 seconds.
Part C
To find the maximum height, substitute t=1.28125 into S(t).
![\begin{gathered} S\mleft(t\mright)=-16t^2+41t+112 \\ \implies S(1.28125)=-16(1.28125)^2+41(1.28125)+112 \\ =138.265625\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gnhrafg8ehlt323y4caq7sbn5dvji9mkxm.png)
The maximum height of the rocket is 138.265625 feet.
Part D
When the rocket hits the ground, the height is 0.
Set S(t)=0 and solve for t as follows.
![S(t)=-16t^2+41t+112=0](https://img.qammunity.org/2023/formulas/mathematics/college/q7zz8hdnfmd74ioran4b0u0akfc822qkhr.png)
Using the quadratic formula:
![\begin{gathered} t=\frac{-41\pm\sqrt[]{41^2-4(-16)(112)}}{2*-16}=\frac{-41\pm\sqrt[]{1681-(-7168)}}{-32} \\ =\frac{-41\pm\sqrt[]{1681+7168}}{-32} \\ =\frac{-41\pm\sqrt[]{8849}}{-32} \\ t=\frac{-41+\sqrt[]{8849}}{-32}\text{ or }t=\frac{-41-\sqrt[]{8849}}{-32} \\ t=-1.658\; \text{or }t=4.22091 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pmbquu8knrw0ns3m5izykxuoanppm3wr8l.png)
Since t cannot be negative, the rocket will hit the ground after 4.22091 seconds.