42.2k views
1 vote
Rhombus ABCD with vertices A(1,0), B(6,-2), C(8,-7), and D(3,-5); 90° counterclockwise rotation about the origin

User Arifng
by
4.8k points

1 Answer

5 votes

Given data:

The given coordinates of Rhombus are A(1,0), B(6,-2), C(8,-7), and D(3,-5).

The coordinate of a point after 90 degrees counterclockwise rotation is,


(x,\text{ y)}\rightarrow(-y,x)

The final coordinate of Rhombus are,


\begin{gathered} A(1,0)=A^(\prime)(0,\text{ 1)} \\ B(6,\text{ -2)=B'(2, 6)} \\ C(8,\text{ -7)=C'(7},\text{ 8)} \\ D(3,\text{ -5)=D'(5, 3)} \end{gathered}

Thus, the final coordinate of Rhombus are A'(0,1), B'(2, 6), C'(7, 8) and D'(5, 3).

User Yeakub Bin Aziz
by
4.9k points