Since the load L varies directly with the product of width and square of the height h, and inveresly as the length l, so
![\begin{gathered} L=k((wh^2)/(l)) \\ OR \\ (L_1)/(L_2)=(w_1)/(w_2)*(h^2_1)/(h^2_2)*(l_2)/(l_1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c3u9luob3zk8bllbrlm9s3glyy63tb65be.png)
We will use the second rule
Since L is 8740 pounds when w is 5 in., h is 7 in. and l is 144 in.
![\begin{gathered} L_1=8740 \\ w_1=5 \\ h_1=7 \\ l_1=144 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ly67svq7cqduhsptry3c5ltt9zca85ggz.png)
We need to find L when w is 6 in., h is 9 in. and l is 216 in.
![\begin{gathered} L_2=? \\ w_2=6 \\ h_2=9 \\ l_2=216 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7cthy0zrglc9cyydkoliwdtyy3l1hoi59m.png)
Let us substitute them in the second rule
![\begin{gathered} (8740)/(L_2)=(5)/(6)*(7^2)/(9^2)*(216)/(144) \\ (8740)/(L_2)=(5)/(6)*(49)/(81)*(216)/(144) \\ (8740)/(L_2)=(245)/(324) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wxab3y3xoiksborczjyzla07wifxqxx97m.png)
By using cross multiplication
![\begin{gathered} 245* L_2=8740*324 \\ 245L_2=2831760 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kiq2mjepsvweomownyqzzxw26a6h6iqyc7.png)
Divide both sides by 245
![\begin{gathered} (245L_2)/(245)=(2831760)/(245) \\ L_2=11558.20408 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/buq0wooacih799mbygr68e89f3ux3bwlfx.png)
Round it to the nearest integer
![L_2=11558\text{ pounds}](https://img.qammunity.org/2023/formulas/mathematics/college/ghfp5eu6bpl50z5unaaydkx9wy339uoif7.png)
The load is 11558 pounds