Given,
The mass of puck A, m₁=0.0380 kg
The mass of puck B, m₂=0.0760 kg
The velocity of puck A before the collision, u=+6.29 m/s
The angle made by puck A with the x-axis, θ₁=65°
The angle made by puck B, θ₂=-37°
The momentum is conserved in both directions simultaneously and independently. That is, the sum x-components of the momentum before the collision and after the collision are equal. The same goes for the y-axis.
Considering the x-direction,
![m_1u=m_1v_1\cos \theta_1+m_2v_2\cos \theta_2](https://img.qammunity.org/2023/formulas/physics/college/rfot5eywgbx3bdocewr08v7i1cz0ppmvzw.png)
Where v₁ is the velocity of puck A and v₂ is the velocity of puck B after the collision.
On substituting the known values,
![\begin{gathered} 0.0380*6.29=0.0380* v_1*\cos 65^(\circ)+0.0760* v_2*\cos (-37)^(\circ) \\ \Rightarrow0.24=0.016v_1+0.061v_2\text{ }\rightarrow\text{ (i)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xfev0csdja0098sectfugwsdvn53mm6ds4.png)
Considering the y-direction,
![0=m_1v_1\sin \theta_1+m_2v_2\sin \theta_2](https://img.qammunity.org/2023/formulas/physics/college/or6nnu7tfxfopyyptgun93bylj1w4m8ozu.png)
On substituting the known values,
![\begin{gathered} 0=0.0380* v_1*\sin 65^(\circ)+0.0760* v_2*\sin (-37)^(\circ) \\ 0=0.034v_1-0.046v_2\text{ }\rightarrow\text{ (ii)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4cz9ulxp8g5bi9gxl40ozbzjbxfsghx7q1.png)
On solving equations (i) and (ii),
![\begin{gathered} v_1=3.93\text{ m/s} \\ v_2=2.90\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/22dezl3uum642mzk5f0mc7ikrj53r1jbmo.png)
Thus the speed of pluck A is 3.93 m/s and the speed of pluck B is 2.90 m/s