We are given that Gloria jumps from a bridge using a bungee cord. The quadratic expression that models an object falling freely is the following:
![h=h_0+v_0t-(1)/(2)gt^2](https://img.qammunity.org/2023/formulas/physics/high-school/3iomtsqye3u76wedfynl3mtq9vzi2apw29.png)
Where:
![\begin{gathered} h_0=\text{initial height} \\ v_0=\text{initial velocity} \\ g=\text{acceleration of gravity} \\ t\text{ = time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iu1jezo9cyobl6vlkiptpoh3rv0qscauxc.png)
A representation of the problem is the following:
If we assume that the initial velocity is zero, we get the following values:
![\begin{gathered} h_0=200 \\ h=200-130 \\ g=32 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gf579z9x35choym0u4wx3u7f1cyrrs0x1l.png)
The height is equivalent to the total height of the bridge minus the longitude of the cord. The value for "g" is a constant equivalent to 32 feet per second.
Replacing we get:
![200-130=200-(1)/(2)(32)t^2](https://img.qammunity.org/2023/formulas/mathematics/college/a3bcltv4x5454mf1on49do76ab25c9hfra.png)
Now we solve for "t", first by subtracting 200 to both sides:
![-130=-(1)/(2)(32)t^2](https://img.qammunity.org/2023/formulas/mathematics/college/1ydpqv1p8rd605tbzxojam80cbrb88uop3.png)
Solving the operation:
![-130=-(1)/(2)(32)t^2](https://img.qammunity.org/2023/formulas/mathematics/college/1ydpqv1p8rd605tbzxojam80cbrb88uop3.png)
Multiplying both sides by -2:
![260=32t^2](https://img.qammunity.org/2023/formulas/mathematics/college/hu41u2opzrx2u4rt9mzd396tx9a351qb35.png)
Dividing both sides by 32:
![(260)/(32)=t^2](https://img.qammunity.org/2023/formulas/mathematics/college/6vos4hgxrfe776b4eu5qs2kij70kr72bvu.png)
Taking square root on both sides of the equation:
![\sqrt[]{(260)/(32)}=√(t^2)](https://img.qammunity.org/2023/formulas/mathematics/college/pb6zcjviyoyus6fienxmss6q7222dwng9z.png)
Solving the operations:
![2.85=t](https://img.qammunity.org/2023/formulas/mathematics/college/scdoa6mjeyg08e09n9vsp1uxp79svw8doa.png)
Therefore, the cord starts stretching at 2.85 seconds.