she should add 7 liters of 10% acid solution
Step-by-step explanation
Step 1
set the equation:
a) let X represents the amount os solution that is 4% acid
let Y represents the amount os solution that is 10% acid
so
I)
![\begin{gathered} (4)/(100)X+(10)/(100)Y=(6)/(100)(x+y) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ofc3058v0154rx2zg26615e96ixtbe4dej.png)
if he has 14 liters of 4% acid solution
![x=14](https://img.qammunity.org/2023/formulas/mathematics/high-school/umtkdeah76yy1a0t9f54173h6oovijqefg.png)
![\begin{gathered} (4)/(100)X+(10)/(100)Y=(6)/(100)(X+Y) \\ (4)/(100)*14+(10)/(100)Y=(6)/(100)(X+Y) \\ 0.56+0.1Y=0.06(14+Y) \\ 0.56+0.1Y=0.84+0.06Y \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a3r1fxtj7lol4qy4emzdub4cquk8rj5pq3.png)
Step 2
solve the equation :
![\begin{gathered} 0.56+0.1Y=0.84+0.06Y \\ subtract\text{ 0.06Y in both sides} \\ 0.56+0.1Y-0.06Y=0.84+0.06Y-0.06Y \\ 0.56+0.04Y=0.84 \\ subtract\text{ 0.56 in both sides} \\ 0.56+0.04Y-0.56=0.84-0.56 \\ 0.04Y=0.28 \\ divide\text{ both sides by 0.04} \\ (0.04Y)/(0.04)=(0.28)/(0.04) \\ Y=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qosxgz1cygpgebd4x9asktbpfibngy8bl0.png)
therefore,
she should add 7 liters of 10% acid solution
I hope this helps you