Answer:
The compressive stress is 177.93 MN/m²
Explanations:
1 inch = 0.0254 meters
The outside diameter, D = 2.5 in
D = 2.5 x 0.0254
D = 0.0635 m
The inner diameter, d = 1.5 in
d = 1.5 x 0.0254
d = 0.0381 m
The area of circular tube is calculated as:
![\begin{gathered} A\text{ = }\frac{\pi{}}{4}(D^2-d^2) \\ A\text{ = }(3.142)/(4)(0.0635^2-0.0381^2) \\ A\text{ = }0.002m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/y6ec2g1pua9uy6dfziom7drszyforo33gp.png)
The Area of the circular tube = 0.002 m²
The compressive load = 80 kips
1 kips = 4448.22 N
The compressive load = 4448.22 x 80 N
The compressive load = 355857.6N
![\begin{gathered} \text{Compressive stress = }\frac{Compressive\text{ load}}{\text{Area}} \\ \text{Compressive stress = }(355857.6)/(0.002) \\ \text{Compressive stress = }177928800N/m^2 \\ \text{Compressive stress = }177.93MN/m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gs7o9ekfwsy3ru0h8l7w3reoogmvpnnp86.png)