169k views
1 vote
Based on the triangles shown below, which statements are true? Select All that apply.

Based on the triangles shown below, which statements are true? Select All that apply-example-1
User WendiKidd
by
5.1k points

1 Answer

3 votes

Answer:

All the options except the third choice are correct.

Step-by-step explanation:

In the given figure:


\angle\text{GER}\cong\angle\text{TEA (Vertical Angles)}

Since angles G and T are congruent:

• Triangles GER and TEA are similar triangles.

Therefore, the following holds:


\begin{gathered} \triangle\text{GRE}\sim\triangle\text{TAE} \\ \triangle E\text{GR}\sim\triangle E\text{TA} \\ (GR)/(TA)=(RE)/(AE) \end{gathered}

Similarly:


\begin{gathered} (EG)/(ET)=(GR)/(TA) \\ ET=10,EG=5,TA=12,RG=\text{?} \\ (5)/(10)=(RG)/(12) \\ (1)/(2)=(RG)/(12) \\ 2RG=12 \\ RG=(12)/(2) \\ RG=6 \\ \text{Therefore if }ET=10,EG=5,and\; TA=12,then\; RG=6 \end{gathered}

Finally, angles R and A are congruent.


\begin{gathered} m\angle R=m\angle A \\ 80\degree=(x+20)\degree \\ x=80\degree-20\degree \\ x=60\degree \end{gathered}

The correct choices are:


\begin{gathered} \triangle\text{GRE}\sim\triangle\text{TAE} \\ \triangle E\text{GR}\sim\triangle E\text{TA} \\ (GR)/(TA)=(RE)/(AE) \\ I\text{f }ET=10,EG=5,and\; TA=12,then\; RG=6 \\ \text{If }m\angle R=80\degree\text{ and }m\angle A=(x+20)\degree,then\; x=60\text{ } \end{gathered}

Only the third choice is Incorrect.

User TejasPancholi
by
4.4k points