Given two points, the equation of the line in slope form can be obtained using this equation
![(y_2-y_1)/(x_2-x_1)\text{ = }\frac{y_{}-y_1}{x_{}-x_1}](https://img.qammunity.org/2023/formulas/mathematics/college/pstdr9elf6fkc2hdc4kcf06ad67bbmwbju.png)
Now we can name the points
x1 = 2, y1 = 8
x2 = 4 , y2 =9
These coordinates can then be substituted into the equation
![(9-8)/(4-2)\text{ =}\frac{y\text{ - 8}}{x\text{ - 2}}](https://img.qammunity.org/2023/formulas/mathematics/college/c0kmwyxclj2emlt0hw9puibdiyy3xb1gaf.png)
![\begin{gathered} (1)/(2)\text{ = }\frac{y\text{ - 8}}{x\text{ - 2}} \\ \\ x-2\text{ = 2 (y - 8)} \\ \\ x\text{ - 2 = 2y - 16} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/asj4073hv9f2i7l5jzqn6v0s69nehuknx5.png)
x - 2 + 16 = 2y
2y = x - 2 +16
2y = x + 14
Divide both sides by 2
y = x/2 + 14/2
![y\text{ = }(x)/(2)\text{ + 7}](https://img.qammunity.org/2023/formulas/mathematics/college/187otmv7v0xhakstjfjxof5uqe2olox9i3.png)
This is the equation in slope-intercept form
where the slope = 1/2