the amount of potassium-42 remaining after 62 hours is approximately 23.31 grams (option B)
Step-by-step explanation:
half life = 12.4 hours
initial amount = 746g
time elapsed = 62 hours
Using the half-life formula:
![\begin{gathered} N(t)=N_0((1)/(2))^{\frac{t}{t_{_{(1)/(2)}}}} \\ N(t)\text{ = amount remaining} \\ N_0\text{ = initial amount = 746g} \\ t\text{ = 62 hours} \\ t_{(1)/(2)\text{ }}\text{ = 12.4 hours} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n1oia7sarowm7a7p6g1umduerch9lgnwsi.png)
Substitute for the values:
![\begin{gathered} N(t)=N_0((1)/(2))^{\frac{t}{t_{_{(1)/(2)}}}} \\ N(t)\text{ = }746((1)/(2))^{(62)/(12.5)} \\ N(t)\text{ = }746((1)/(2))^5 \\ N(t)\text{ = }746((1)/(2^5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2yk9lz66uexl098ku20q5tfl54ti2m4eg4.png)
![\begin{gathered} N(t)\text{ = }((746)/(32))^{} \\ N(t)\text{ = }23.3125 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/62jj8fn8olpe8uba94dq49bvvg7h8jqyoj.png)
Hence, the amount of potassium-42 remaining after 62 hours is approximately 23.31 grams (option B)