To begin with, we will have to sketch the image of the question
To find the value of tan B
we will make use of the trigonometric identity
![\tan \theta=(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/j5nv1lull6vloc2klec4x8sr7kryvp0bw1.png)
From the diagram given
![\tan B=\frac{\text{opposite}}{\text{adjacent}}=(b)/(96)](https://img.qammunity.org/2023/formulas/mathematics/college/oijrxm2s1grz14v9xgh3gy4wvxxb9jkaxf.png)
Since the value of b is unknown, we will have to get the value of b
To do so, we will use the Pythagorean theorem
![\begin{gathered} \text{hypoteuse}^2=\text{opposite}^2+\text{adjacent}^2 \\ b^2=100^2-96^2 \\ b=\sqrt[]{784} \\ b=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rqblbsnzyvaw195bkpsiktvro87wxi936u.png)
Since we now know the value of b, we will then substitute this value into the tan B function
so that we will have
![\tan \text{ B=}(opposite)/(adjecent)=(b)/(a)=(28)/(96)=(7)/(24)](https://img.qammunity.org/2023/formulas/mathematics/college/wwli61wonhi7utnlobuapac2w52iw23rmu.png)
Therefore
![\tan \text{ B=}(7)/(24)](https://img.qammunity.org/2023/formulas/mathematics/college/k9o5j9pt5rxt940bmoo4t24ferpwn2gfgx.png)