Given:
The half-life of carbon-14 is 5730 years.
The initial amount of carbon is I = 50 grams.
Step-by-step explanation:
To find the final amount of carbon after 1000 years.
The fundamental decay equation is,
![\begin{gathered} F=Ie^(-\lambda t) \\ \text{Where, }\lambda=\frac{\ln 2}{t_{(1)/(2)}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ofu6s8spgqb41mh4cbq6x8hhr7julhajty.png)
Let us find the radioactive constant first.
![\begin{gathered} \lambda=(\ln 2)/(5730) \\ \lambda=0.00012096809 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s8ilm3ooojdc8oyqkynqmo80vqdkajgr3g.png)
Then, the final amount of the corban-14 is,
![\begin{gathered} F=50e^(-0.000121(1000))^{} \\ =44.30g \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoj4r2kz65jtwj59pzln4uptp08wrnzge9.png)
Hence, the amount of a 50-gram sample of Carbon-14 will be left in 1000 years is 44.30 g.