141k views
0 votes
Find the center that eliminates the linear terms in the translation of 4x^2 - y^2 + 24x + 4y + 28 = 0.(-3, 2)(-3,- 2)(4, 0)

1 Answer

0 votes

Step 1

Given;


4x^2-y^2+24x+4y+28=0

Required; To find the center that eliminates the linear terms

Step 2


\begin{gathered} 4x^2-y^2+24x+4y=-28 \\ 4x^2+24x-y^2+4y=-28 \\ Complete\text{ the square }; \\ 4x^2+24x \\ \text{use the form ax}^2+bx\text{ +c} \\ \text{where} \\ a=4 \\ b=24 \\ c=0 \end{gathered}
\begin{gathered} consider\text{ the vertex }form\text{ of a }parabola \\ a(x+d)^2+e \\ d=(b)/(2a) \\ d=(24)/(2*4) \\ d=(24)/(8) \\ d=3 \end{gathered}
\begin{gathered} Find\text{ the value of e using }e=c-(b^2)/(4a) \\ e=0-(24^2)/(4*4) \\ e=0-(576)/(16)=-36 \end{gathered}

Step 3

Substitute a,d,e into the vertex form


\begin{gathered} a(x+d)^2+e \\ 4(x+_{}3)^2-36 \end{gathered}
\begin{gathered} 4(x+3)^2-36-y^2+4y=-28 \\ 4(x+3)^2-y^2+4y=\text{ -28+36} \\ \\ \end{gathered}

Step 4

Completing the square for -y²+4y


\begin{gathered} \text{use the form ax}^2+bx\text{ +c} \\ \text{where} \\ a=-1 \\ b=4 \\ c=0 \end{gathered}
\begin{gathered} consider\text{ the vertex }form\text{ of a }parabola \\ a(x+d)^2+e \\ d=(b)/(2a) \\ d=\text{ }(4)/(2*-1) \\ d=(4)/(-2) \\ d=-2 \end{gathered}
\begin{gathered} Find\text{ the value of e using }e=c-(b^2)/(4a) \\ e=0-(4^2)/(4*(-1)) \\ \\ e=0-(16)/(-4) \\ e=4 \end{gathered}

Step 5

Substitute a,d,e into the vertex form


\begin{gathered} a(y+d)^2+e \\ =-1(y+(-2))^2+4 \\ =-(y-2)^2+4 \end{gathered}

Step 6


\begin{gathered} 4(x+3)^2-y^2+4y=\text{ -28+36} \\ 4(x+3)^2-(y-2)^2+4=-28+36 \\ 4(x+3)^2-(y-2)^2=-28+36-4 \\ 4(x+3)^2-(y-2)^2=4 \\ (4(x+3)^2)/(4)-((y-2)^2)/(4)=(4)/(4) \\ (x+3)^2-((y-2)^2)/(2^2)=1 \end{gathered}

Step 7


\begin{gathered} ((x-h)^2)/(a^2)-((y-k)^2)/(b^2)=1 \\ \text{This is the }form\text{ of a hyperbola.} \\ \text{From here } \\ a=1 \\ b=2 \\ k=2 \\ h=-3 \end{gathered}

Hence the answer is (-3,2)

User CathyQian
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories