Given:
The radius of the circular disk is 24cm.
The radius has a maximum error of 0.2 cm.
To find:
The area
Step-by-step explanation:
Using the area of the circle,
![A=\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcgfavc89jro4qntamn2b9gfliomu1jwuf.png)
The area of the disk is,
![\begin{gathered} A=\pi*24^2 \\ =576\pi cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jk5r0rpfrr7krpnieuugva6e3ukaxs2e33.png)
If the radius is increased from 24 by 0.02, then the radius becomes, r = 0.02
The change in the calculated area will be,
![\begin{gathered} \Delta A=Area\text{ of the cirlce with radius of 24.02-Area of the circle with radius of 24} \\ =\pi*24.02^2-\pi*24^2 \\ =576.96\pi-576\pi \\ =0.96\pi cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ji9ciegqvmweqw7w8awk5yhqvf3u1m31rw.png)
The relative percentage of area is,
![\begin{gathered} (\Delta A)/(A)*100=(0.96\pi)/(576\pi)*100 \\ =0.0017*100 \\ =0.17\text{ \%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3yupk1jaw7auwpkalgcps8ewypmuforlpo.png)
Final answer:
The maximum error in area is,
![0.96\pi cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/mhw045vr2z3or90kd07xo74d4xr9o2f6i8.png)
The relative percentage error in the area is 0.17%.