40.2k views
1 vote
Solve the system of linear equations by substitution x+4y=-1 and -3x-14=y

User HighHopes
by
8.5k points

1 Answer

2 votes

Step-by-step explanation

We are given the equations below:


\begin{gathered} x+4y=-1(equation\text{ }1) \\ -3x-14=y(equation\text{ }2) \end{gathered}

We are required to solve the equations above simultaneously using substitution. Thus, we have:


\begin{gathered} From\text{ }equation\text{ }1, \\ x+4y=-1 \\ Make\text{ }x\text{ }the\text{ }subject \\ x=-1-4y(equation\text{ }3) \\ Substitute\text{ }for\text{ }x\text{ }into\text{ }equation\text{ }2 \\ Equation\text{ }2:-3x-14=y \\ \Rightarrow-3(-1-4y)-14=y \\ 3+12y-14=y \\ 12y-11=y \\ Collect\text{ }like\text{ }terms \\ -11=y-12y \\ -11=-11y \\ (-11)/(-11)=(-11y)/(-11) \\ y=1 \end{gathered}
\begin{gathered} From\text{ }equation\text{ }3, \\ x=-1-4y \\ Substitute\text{ }the\text{ }value\text{ }of\text{ }y \\ x=-1-4(1) \\ x=-1-4 \\ x=-5 \end{gathered}

Hence, the answer is:


x=-5;y=1

User Ali Reza Ebadat
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories