(a)
Let:
w1 = Original width
l1 = Original length
w2 = New width
l2 = New length
A1 = Original area
A2 = New Area
so:
![\begin{gathered} w2=3w1=3\cdot10=30ft \\ l2=2l1=2\cdot50=100ft \\ A2=w2\cdot l2=3000ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/atlcleajrmxos14lbh1jclsjsxn9eltig5.png)
Answer:
New length: 100ft
New width: 30 ft
New Area: 3000ft²
-------------------------------------------
(b)
![(A2)/(A1)=(3000)/(500)=6](https://img.qammunity.org/2023/formulas/mathematics/college/uf7b8kouy635v1vhfdyascqbv6zazrxfjm.png)
Answer:
The area of the new walkway will be 6 times the area of the current walkway
---------------------------------------
(c)
![\begin{gathered} 8\cdot500=x\cdot50\cdot4\cdot10 \\ 4000=2000x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ez61v8ovzub8ycucl09u7kws73jktnwlvp.png)
Solve for x:
![\begin{gathered} x=(4000)/(2000) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qer0p6o53nq7h5a15ab8zy0n9wtlneihu9.png)
Answer:
Make the new length 2 times the current length.