183k views
13 votes
Do anyone know what is the answer

Do anyone know what is the answer-example-1
User Djv
by
3.0k points

2 Answers

7 votes

"first principle" means "use the limit definition of the derivative":


f'(x) = \displaystyle \lim_(h\to0) \frac{f(x+h) - f(x)}h

For f(x) = y = ax² + b, the derivative is


f'(x) = \displaystyle \lim_(h\to0) \frac{(a(x+h)^2+b) - (ax^2+b)}h


f'(x) = \displaystyle \lim_(h\to0) \frac{a(x^2+2xh+h^2) - ax^2}h


f'(x) = \displaystyle \lim_(h\to0) \frac{2axh+ah^2}h


f'(x) = \displaystyle \lim_(h\to0) (2ax+ah) = \boxed{2ax}

User Kirschkern
by
3.5k points
10 votes

We are given with a function y = ax² + b and are asked to find it's derivative by first principle of differentiation , so by first principle we know that :-


  • {\boxed{\displaystyle \bf f^(\prime)(x)=\lim_(h\to 0)(f(x+h)-f(x))/(h)}}

Now , here f(x) is y = ax² + b , so , f(x+h) will be a(x+h)²+b . Now by first principle ;


{:\implies \quad \displaystyle \sf y^(\prime)=\lim_(h\to 0)\frac{\{a(x+h)^(2)+b\}-(ax^(2)+b)}{h}}


{:\implies \quad \displaystyle \sf y^(\prime)=\lim_(h\to 0)\frac{\{a(x^(2)+h^(2)+2xh)+b\}-(ax^(2)+b)}{h}\quad \qquad \{\because (a+b)^(2)=a^(2)+b^(2)+2ab\}}


{:\implies \quad \displaystyle \sf y^(\prime)=\lim_(h\to 0)\frac{\cancel{ax^(2)}+ah^(2)+2axh+\cancel{b}-\cancel{ax^(2)}-\cancel{b}}{h}}


{:\implies \quad \displaystyle \sf y^(\prime)=\lim_(h\to 0)\frac{\cancel{h}(ah+2ax)}{\cancel{h}}}


{:\implies \quad \displaystyle \sf y^(\prime)=a* 0+2ax}


{:\implies \quad \bf \therefore \quad \underline{\underline{y^(\prime)=2ax}}}

User JAK
by
3.1k points