439,334 views
9 votes
9 votes
Help
me please and thank you explain it for 100 points

Help me please and thank you explain it for 100 points-example-1
User Nigel Ren
by
3.0k points

2 Answers

22 votes
22 votes

Answer:


\huge \colorbox{blue}{B}

Explanation:

to understand this

you need to know about:

  • equation
  • PEMDAS

let's solve:

we are given the formula,Mass and volume

to find density we just need to substitute the value of mass and value and simplify it


\sf substitute \: the \: value \: of \: mass \: and \: volume :


\quad \: \sf \frac{7.0 * {10}^(24) \: kg }{3.5 * {10}^(12) \: {km}^(3) }

now we will use
(x^m)/(x^n)=x^(m-n) to simplify division


\sf simplify \: division : \\ \quad \: \sf 2 * {10}^(24 - 12) * \frac{kg}{ {km}^(3) } \\ \quad \tt 2 * {10}^(12) \frac{kg}{ {km}^(3) }

hence, our choice is
B

User TerryMatula
by
3.1k points
24 votes
24 votes

___________________________________


\huge\underline{\tt{\red{Formula:}}}


\quad\quad\quad\quad\tt{density = (mass)/(volume) }


\huge\underline{\tt{\red{Solution:}}}


\quad\quad\quad\quad\tt{density = \frac{7.0 * {10}^(24) \: kg}{3.5 * {10}^(12) \: k {m}^(3) } }


\quad\quad\quad\quad\tt{density = ((7.0)/(3.5 ) = 2.0)}


\quad\quad\quad\quad\tt{\:\:and\:\:({10}^(24 -12))}


\quad\quad\quad\quad \boxed{\tt{density = 2.0 * {10}^(12) \: \frac{kg}{k {m}^(3) }} }


\huge\underline{\tt{\red{Answer:}}}


\quad\quad \underline{\boxed{\tt{ \red{B.) \: \: 2.0 * {10}^(12) \: \frac{kg}{k {m}^(3) }}}} }


\huge\underline{\tt{\red{Explanation:}}}

Given that the formula for density is equal to mass all over the volume.

We use this formula:


\boxed{\tt{density = (mass)/(volume) }}.

We substitute it like this:


\boxed{\tt{density = \frac{7.0 * {10}^(24) \: kg}{3.5 * {10}^(12) \: k {m}^(3) } }}

Then, hence we got:


\boxed{\tt{density = 2.0 * {10}^(12) \: \frac{kg}{k {m}^(3) }} }

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

Help me please and thank you explain it for 100 points-example-1
User Josh Strater
by
2.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.