198k views
4 votes
Are [3/6 -4/5] and [5/-6 4/3] inverses? Why or why not?

Are [3/6 -4/5] and [5/-6 4/3] inverses? Why or why not?-example-1
User Pag Sun
by
8.0k points

1 Answer

1 vote

Answer:

A.

Step-by-step explanation:

Two matrices are inverses if when we multiply them, we get the identity matrix with 1 in the diagonal and 0 on the other entries.

In this case, we get that the multiplication of the matrices is equal to


\begin{bmatrix}{3} & {-4} \\ {6} & {5}\end{bmatrix}\begin{bmatrix}{5} & {4} \\ {-6} & {3}\end{bmatrix}=\begin{bmatrix}{3(5)-4(-6)} & {3(4)-4(3)} \\ {6(5)+5(-6)} & {6(4)+5(3)}\end{bmatrix}=\begin{bmatrix}{15+24} & {12-12} \\ {30-30} & {24+15}\end{bmatrix}=\begin{bmatrix}{39} & {0} \\ {0} & {39}\end{bmatrix}

Since


\begin{bmatrix}{39} & {0} \\ {0} & {39}\end{bmatrix}\\e\begin{bmatrix}{1} & {0} \\ {0} & {1}\end{bmatrix}

We get that the matrices are not inverses.

So, the answer is A.

User Ood
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.