Answer:
11 units
Step-by-step explanation:
Given that lines EB and DC are parallel, we use the proportional division theorem:
![(AE)/(ED)=(AB)/(BC)](https://img.qammunity.org/2023/formulas/mathematics/college/99fkjxdy5oky1f9qajid70jpf12aidy5qt.png)
Substitute the given values:
![\begin{gathered} (2)/(ED)=(10)/(45) \\ \text{Cross multiply} \\ ED*10=2*45 \\ \text{Divide both sides by 10} \\ (ED*10)/(10)=(2*45)/(10) \\ ED=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5d53y98t45q1nuaxcuoxr0xufcnxvv8qmm.png)
Next, find the length of AD:
![\begin{gathered} AD=AE+ED \\ =2+9 \\ =11\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gbumcs3s6pzoo2ntcw74yrxhxdwhvclh14.png)
The length of AD is 11 units.
Alternate Method
![ED=AD-2](https://img.qammunity.org/2023/formulas/mathematics/college/vuxs3ca6tbrqhmkpl9l5y5spkw109206jt.png)
So, we have that:
![(AE)/(ED)=(AB)/(BC)\implies(AE)/(AD-2)=(AB)/(BC)](https://img.qammunity.org/2023/formulas/mathematics/college/9qke3onljgzb74uawrohe4hf9n5oytjfrw.png)
Substitute the given values:
![(2)/(AD-2)=(10)/(45)](https://img.qammunity.org/2023/formulas/mathematics/college/ycdsnvnjo4fkyy4x9lpuyxnjb3a5slu2mc.png)
Cross multiply:
![undefined]()