Answer:
The number of units that will give the maximum profit is;
![1900\text{ units}](https://img.qammunity.org/2023/formulas/mathematics/college/v19uw3s5le9z7rl4ctaps3yqw5llkcck0x.png)
The maximum possible profit is;
![\text{ \$}239,090](https://img.qammunity.org/2023/formulas/mathematics/college/1ntxc4rnqan66d8qv267j8pu5oi4tvaa36.png)
Step-by-step explanation:
Given that the weekly revenue for a product is given by ;
![R(x)=307.8x-0.045x^2](https://img.qammunity.org/2023/formulas/mathematics/college/n1ghha4m46rnegmo67z84bjicdpubsy5h1.png)
and the weekly cost is ;
![C(x)=10,000+153.9x-0.09x^2+0.00003x^3](https://img.qammunity.org/2023/formulas/mathematics/college/my7wgtfsflxfgavaa51lugvfdjh10m27w7.png)
Recall that
Profit = Revenue - Cost
![P(x)=R(x)-C(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3r9w44q173wp0f0kgyb63izfoqnf6o9s8j.png)
![\begin{gathered} P(x)=307.8x-0.045x^2-(10,000+153.9x-0.09x^2+0.00003x^3) \\ P(x)=307.8x-0.045x^2-10,000-153.9x+0.09x^2-0.00003x^3 \\ P(x)=153.9x+0.045x^2-0.00003x^3-10,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/57j9nuqertvbgweyug58qb4ibozkroo708.png)
Using graph to derive the maximum point on the function;
Therefore, the maximum point is at the point;
![(1900,239090)](https://img.qammunity.org/2023/formulas/mathematics/college/68ncs25rza811f6ggkhirn9wfsdmzj1qh4.png)
So;
The number of units that will give the maximum profit is;
![1900\text{ units}](https://img.qammunity.org/2023/formulas/mathematics/college/v19uw3s5le9z7rl4ctaps3yqw5llkcck0x.png)
The maximum possible profit is;
![\text{ \$}239,090](https://img.qammunity.org/2023/formulas/mathematics/college/1ntxc4rnqan66d8qv267j8pu5oi4tvaa36.png)