Given data;
* The mass of the elevator is 5000 kg.
* The acceleration of the elevator is,
![a=3ms^(-2)](https://img.qammunity.org/2023/formulas/physics/college/lru2ci4vdka9hq5hho4rlcs4kjv4q9luii.png)
Solution:
The free body diagram of the elevator is,
The weight of the elevator is,
![W=mg](https://img.qammunity.org/2023/formulas/physics/college/mwp20nloxyakj67s56rj7ugdcwo94t9z7k.png)
where m is the mass of the elevator and g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} W=5000*9.8 \\ W=49000\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pekr2kzf3ry8bn4e14kok43xwvqn1g2pc3.png)
The net force acting on the elevator is,
![F_{\text{net}}=ma](https://img.qammunity.org/2023/formulas/physics/college/g1od3o00pcm53ytmxt53qva12p9z54ha5k.png)
where a is the acceleration of the elevator moving upwards,
Substituting the known values,
![\begin{gathered} F_{\text{net}}=5000*3 \\ F_{\text{net}}=15000\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/za225gge0bgikgflbhu9k4ytm1waa4wtr9.png)
From the free body diagram, the tension acting on the cable is,
![\begin{gathered} T-W=F_{\text{net}} \\ T=F_{\text{net}}+W \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/czaynmn1rtw9gbeig4ulejn3daxvvxfu39.png)
Substituting the known values,
![\begin{gathered} T=15000+49000 \\ T=64000\text{ N} \\ T=64\text{ kN} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/mqfzr6vfycnflmxian4jgied5l57m6o797.png)
Thus, the tension acting in the cable is 64 kN.