We are given the initial function to be
![\begin{gathered} A=A_0e^(-0.316t) \\ \text{where} \\ A_0=550mg \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gc322ktrwt2efx9epqdstwywmfv2st6vgz.png)
Page 5
Question 4
We are told to use the function above to estimate how long it will take for the amount in the body to be 175mg.
This simply translates to making A= 175 in the equation so that we will obtain
![175=550e^(-0.316t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nuv1k6o3agk5lu3e5oyih61p7l7w5hpb5x.png)
So we will make t the subject of the formula
To do so, we can follow the steps below
Step 1: Divide both sides by 550
![\begin{gathered} (175)/(550)=(550e^(-0.316t))/(550) \\ 0.318=e^(-0.316t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/suxa30mrzi7ej21ybag1rpd4nnq3vtp4qy.png)
Next, we will take the natural logarithm to both sides
![\begin{gathered} ln(0.318)=\ln (e^(-0.316t)) \\ \ln 0.318=-0.316t \\ -0.316t=\ln 0.318 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdusp4db47gri0vnyd462wvnf7jrk00uah.png)
Next, we will divide both sides by -0.316
![\begin{gathered} t=(\ln (0.318))/(-0.316) \\ t=3.6256 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b9lurvln5gvcdlp1r44yndps75njqg6l6h.png)
Thus, the value of t = 3.6256 hours.