40.4k views
5 votes
Write the coordinates of the vertices after a translation 7 units left and 7 units down. S’ = ( , )T’ = ( , )U’ = ( , )V’ = ( , )

Write the coordinates of the vertices after a translation 7 units left and 7 units-example-1

1 Answer

6 votes
Answer:

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)

Step-by-step explanation:

Given:

quadrilateral STUV

To find:

The coordinates of the vertex when it is translated 7 units to the left and 7 units down

To determine the new coordinates, we wil be apply int theranslation rlule:


\begin{gathered} Translation\text{ to the left: }(x.\text{ y\rparen }\rightarrow\text{ \lparen x-a, y\rparen } \\ Translation\text{ to the right: \lparen x, y\rparen }\rightarrow\text{ \lparen x + a, y\rparen} \\ Translat\imaginaryI on\text{ }to\text{ the top: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y + b\rparen} \\ Translation\text{ to down: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y- b\rparen} \end{gathered}

Initial coordinates of the vertx:

S = (3, -3), T = (3, 7), U = (10, 7) and V = (10, -3)


\begin{gathered} Applying\text{ the translation rule:} \\ S^(\prime)\text{ = \lparen3 - 7, -3-7\rparen= \lparen-4, -10\rparen} \\ T^(\prime)\text{ = \lparen3-7, 7-7\rparen = \lparen-4, 0\rparen} \\ U^(\prime)\text{ = \lparen10-7, 7-7\rparen = \lparen3, 0\rparen} \\ V^(\prime)\text{ = \lparen10-7, -3-7\rparen= \lparen3, -10\rparen} \end{gathered}

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)

User Peter Lenkefi
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories