40.4k views
5 votes
Write the coordinates of the vertices after a translation 7 units left and 7 units down. S’ = ( , )T’ = ( , )U’ = ( , )V’ = ( , )

Write the coordinates of the vertices after a translation 7 units left and 7 units-example-1

1 Answer

6 votes
Answer:

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)

Step-by-step explanation:

Given:

quadrilateral STUV

To find:

The coordinates of the vertex when it is translated 7 units to the left and 7 units down

To determine the new coordinates, we wil be apply int theranslation rlule:


\begin{gathered} Translation\text{ to the left: }(x.\text{ y\rparen }\rightarrow\text{ \lparen x-a, y\rparen } \\ Translation\text{ to the right: \lparen x, y\rparen }\rightarrow\text{ \lparen x + a, y\rparen} \\ Translat\imaginaryI on\text{ }to\text{ the top: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y + b\rparen} \\ Translation\text{ to down: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y- b\rparen} \end{gathered}

Initial coordinates of the vertx:

S = (3, -3), T = (3, 7), U = (10, 7) and V = (10, -3)


\begin{gathered} Applying\text{ the translation rule:} \\ S^(\prime)\text{ = \lparen3 - 7, -3-7\rparen= \lparen-4, -10\rparen} \\ T^(\prime)\text{ = \lparen3-7, 7-7\rparen = \lparen-4, 0\rparen} \\ U^(\prime)\text{ = \lparen10-7, 7-7\rparen = \lparen3, 0\rparen} \\ V^(\prime)\text{ = \lparen10-7, -3-7\rparen= \lparen3, -10\rparen} \end{gathered}

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)

User Peter Lenkefi
by
4.0k points