Given: An expression-
![u^4x^3-81x^3](https://img.qammunity.org/2023/formulas/mathematics/college/2trxt0ut0oigq8bl4y806s5pnnjmmkr4hc.png)
Required: To factorize the given expression.
Explanation: The difference of the square formula is-
![a^2-b^2=(a+b)(a-b)](https://img.qammunity.org/2023/formulas/mathematics/college/nj06qe3w5n12tlj39kazbxk0aehiwwpk6h.png)
Now the given expression can be factorized as follows-
![x^3(u^4-81)](https://img.qammunity.org/2023/formulas/mathematics/college/vd5xl5kcg9weeelqz1r515tulqshctx4gt.png)
Further, we have-
![x^3[(u^2)^2-(3^2)^2]](https://img.qammunity.org/2023/formulas/mathematics/college/eu0q21vkibyymoip17ep3n8vl19paotas8.png)
Applying the difference of square formula,
![x^3(u^2-3^2)(u^2+3^2)](https://img.qammunity.org/2023/formulas/mathematics/college/pntjnej1hi12upsgw8txkhnej6rwwoof7w.png)
We can further factorize the expression as-
![x^3(u+3)(u-3)(u^2+9)](https://img.qammunity.org/2023/formulas/mathematics/college/2xrwncutc4ebfyizi3uucpqxxc37unwkyl.png)
Now plotting the graph,
Let
![y=x^3(u+3)(u-3)(u^2+9)](https://img.qammunity.org/2023/formulas/mathematics/college/5yd9k6s214jdfclz73u91a1c49clhpscma.png)
Now the graph will depend on the value of u.
The graph will be a line y=0 at u=3 and u=-3.
For u<-3, the graph is-
For -3
Finally, for u>3 we have
Final Answer: The factorized form of the expression is
![x^3(u+3)(u-3)(u^2+9)](https://img.qammunity.org/2023/formulas/mathematics/college/2xrwncutc4ebfyizi3uucpqxxc37unwkyl.png)
,,