We have the following info given:
![\text{Mean}=10,\text{ s=6.8, n=10}](https://img.qammunity.org/2023/formulas/mathematics/college/nah1c1unorbdmgoddt7tlr0v4lzy1qc34u.png)
and we want to find the margin of error for the mean so we can use the following formula:
![ME=t(s)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/bw9kr7f1mn5vfekntouqw6yr5ejx1208ay.png)
The degrees of freedom are:
![df=n-1=10-1=9](https://img.qammunity.org/2023/formulas/mathematics/college/r667ea1qt6g0l7scl9ozzoy9qn4b6sar4x.png)
And for this case the critical value at 95% of confidence would be:
t= 2.262
And then replacing we got:
![ME=2.262\cdot(6.8)/(√(10))=4.864](https://img.qammunity.org/2023/formulas/mathematics/college/y2kljzgl31qwmtljmz29wxpxqypqy74pv3.png)
Then the margin of error for this case would be 4.864