From the problem, we have :
![\begin{gathered} 3x+3y=3 \\ y=-(1)/(2)x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dvz1c9gx6ofe81nbflk0zkmrj8uy8omd3i.png)
Find the x and y intercepts of the lines to graph the following equations.
For 3x + 3y = 3
x-intercept :
![\begin{gathered} 3x+\cancel{3y}=3 \\ x=(3)/(3)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f6ur7t53pxzbqjkf7r8sluet490lft78gf.png)
y-intercept :
![\begin{gathered} \cancel{3x}+3y=3 \\ y=(3)/(3)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uokxfhtia3ll6ddp06lik4vbtu2tkuvm0e.png)
The points are (1, 0) and (0, 1)
For y = -1/2 x + 2
y-intercept :
![\begin{gathered} y=\cancel{-(1)/(2)x}+2 \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7vkbta4bz8amcy8pjzhddcsvbfzeucq7qy.png)
x-intercept :
![\begin{gathered} \cancel{y}=-(1)/(2)x+2 \\ (1)/(2)x=2 \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kgovshaa1epgufe69msvcipybwv9q61aye.png)
The points are (0, 2) and (4, 0)
Plot the points :
The solution is the intersection between two lines.
The intersection is at (-2, 3)
The y coordinate is 3
The answer is B. y = 3