Let x represent one of the unknown numbers and y represent the other.
The product of both numbers is 24: xy=24
The sum of both numbers is 14: x+y=24
With this we determined a 2 unknown equation system.
Now write one of the equation is terms of one of the variables, for example write the second equation for x:
![\begin{gathered} x+y=14 \\ x=14-y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8uttzqwo48adjjn119y57rlecugf8070cm.png)
Replace it in the first one
![\begin{gathered} xy=24 \\ (14-y)y=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/og8wrt49nvp30vikayj1mobn0ynzia8l1q.png)
Solve the parentheses applying the distributive propperty of multiplication:
![14y-y^2=24](https://img.qammunity.org/2023/formulas/mathematics/college/d6521znsjdujyg3ivp4utu4v6xdxj9j0rm.png)
Set the equal to zero:
![-y^2+14y-24](https://img.qammunity.org/2023/formulas/mathematics/college/1lbunvz6hmgl01pk56kq8ar8mhfzsgr540.png)
Using the quadratic formula solve for the possible values of y:
![y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/gfo69urp8rw17yg122uzk6md9epfe1uf75.png)
For the expression determined a=-1, b=14 and c=-24, replace in the formula and calculate
![\begin{gathered} y=\frac{-14\pm\sqrt[]{14^2-4(-1)(-24)}}{2(-1)} \\ y=\frac{-14\pm\sqrt[]{100}}{-2} \\ y=(-14\pm10)/(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f1x8ljeaz2z9m62iltp5y0b90hw7i44va6.png)
Now solve for the two possible values of y
Positive:
![\begin{gathered} y=(-14+10)/(-2) \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j1ew4z6792u0mepvbzwihccaiwmqw8al5c.png)
Negative:
![\begin{gathered} y=(-14-10)/(-2) \\ y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/znf0tiq23c62r9nmzwkttnq4ehzh4qsylr.png)
y has two possible outcomes 2 and 12, for both values you have to calculate the value of x using either equation:
For y=2
![\begin{gathered} xy=24 \\ x=(24)/(y) \\ x=(24)/(2) \\ x=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jlpfqfxls4cpx666mt14n4y38ro9fve9yf.png)
For y=12
![\begin{gathered} x+y=14 \\ x=14-y \\ x=14-12 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/95m8mqknae3wf26g1zgyzqama5g9o8k4qn.png)
The numbers whose product is 24 and sum is 14 are 2 and 12