First:
![(f\circ g)(x)=\sqrt[]{-x-1}+9](https://img.qammunity.org/2023/formulas/mathematics/college/kn6n2tjaxs2ededav77n1btjkjxfe7p359.png)
The domain of this function is when the term under the root is positive or 0 because there is no root for a negative number in the real numbers, this only happens when:
![-x-1\ge0\Rightarrow-x\ge1\Rightarrow x\leq-1](https://img.qammunity.org/2023/formulas/mathematics/college/isuedqnnlchflhbtbp890bncxpi9m7pkza.png)
Then, the domain is when x is:
![x=(-\infty,-1\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/ldtoea7efkcguhknziwkwgjncsohhi9f27.png)
Then, for the second part:
![(g\circ f)(x)=\sqrt[]{-(x+9)-1}=\sqrt[]{-x-10}](https://img.qammunity.org/2023/formulas/mathematics/college/i4dljcdhbejep2te915zf5k29ky0mpwdhv.png)
The domain for this function is only when the term under the root is positive or 0, so:
![-x-10\ge0\Rightarrow-x\ge10\Rightarrow x\leq-10](https://img.qammunity.org/2023/formulas/mathematics/college/i8mnxe2uq93q8880xr0obqijtb2rxj5xmq.png)
Then, the domain is:
![x=(-\infty,-10\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/gfc5yv3wrrlb9ypiylc9nw4j6hwc825ial.png)