The given equation is
![4(5+8^(x+1))=100](https://img.qammunity.org/2023/formulas/mathematics/college/5r3julp05zzqa3fbnjddnt0zbm1ydrwjb1.png)
Divide both sides by 4
![\begin{gathered} (4(5+8^(x+1)))/(4)=(100)/(4) \\ \\ 5+8^(x+1)=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cgkylnmu7cvshmww2h6d67bgebsrfsbkmt.png)
Subtract 5 from each side
![\begin{gathered} 5-5+8^(x+1)=25-5 \\ \\ 8^(x+1)=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7mlhy01qshwe6v5uyheps9l8qvwam02jbs.png)
Insert log on both sides
![log(8^(x+1))=log20](https://img.qammunity.org/2023/formulas/mathematics/college/lru0imjyqbsk3sxhkt54pjnstrwzryfgfl.png)
Use the rule of the power
![(x+1)log(8)=log(20)](https://img.qammunity.org/2023/formulas/mathematics/college/qdcm2cdqd3b6qi3z0ih5hi1n4m4s2cl0ro.png)
Divide both sides by log(8)
![\begin{gathered} ((x+1)log(8))/(log(8))=(log(20))/(log(8)) \\ \\ x+1=(log(20))/(log(8)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9qzimlkg25f6q2n5nm0jz02c7jzj4rsiv.png)
Subtract 1 from both sides
![\begin{gathered} x+1-1=(log(20))/(log(8))-1 \\ \\ x=(log(20))/(log(8))-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ej9lg743rvwtt2iqvmxgr6zlcmgoar1sfw.png)
a)
The exact solution is
![x=(log(20))/(log(8))-1](https://img.qammunity.org/2023/formulas/mathematics/college/wx53z58074ts2tibyd3wgxqbfol098j99h.png)
b)
By using the calculator the solution is
![x=0.440643](https://img.qammunity.org/2023/formulas/mathematics/college/wfvl2qqjtkpb0eqqw9eh3ucvmdo6xy8ufh.png)
The answer is x = 0.440643 to the nearest 6 decimal place