182k views
0 votes
Provide an example of two series , and b that both diverge, but (a -b.) converges.

1 Answer

7 votes

Let the sequence a_n be equal to:


a_n=1+(1)/(n^2)

And the sequence b_n be equal to:


b_n=1

Notice that both series diverge:


\begin{gathered} \sum ^(\infty)_(n\mathop=1)a_n=\sum ^(\infty)_(n\mathop=1)(1+(1)/(n^2))\rightarrow\infty \\ \sum ^(\infty)_(n\mathop=1)b_n=\sum ^(\infty)_(n\mathop=1)(1)\rightarrow\infty \end{gathered}

Nevertheless, notice that the sequence a_n-b_n is given by:


\begin{gathered} a_n-b_n=(1+(1)/(n^2))-1 \\ =(1)/(n^2) \end{gathered}

Then:


\sum ^(\infty)_(n\mathop=1)(a_n-b_n)=\sum ^(\infty)_(n\mathop=1)(1)/(n^2)

It is a famous result that:


\sum ^(\infty)_(n\mathop=1)(1)/(n^2)=(\pi^2)/(6)

Then we found two divergent series so that each series diverge and the series of the difference a_n-b_n converge. The series are:


\begin{gathered} \sum ^(\infty)_(n\mathop=1)(1+(1)/(n^2)) \\ \sum ^(\infty)_(n\mathop=1)(1) \end{gathered}

User Stanislav Kvitash
by
3.4k points