41.2k views
5 votes
Find Sin A, Cos A, Sin B, and Cos B for the following. Enter answers as fractions in simplest form, not decimals. No radical numbers for Denominator

Find Sin A, Cos A, Sin B, and Cos B for the following. Enter answers as fractions-example-1
User Narf
by
7.9k points

1 Answer

4 votes

The Pythagorean theorem states:


c^2=a^2+b^2

where a and b are the legs and c is the hypotenuse of a right triangle.

Substituting with b = 5, and c = 5√3, and solving for a (opposite side to angle A):


\begin{gathered} (5\sqrt[]{3})^2=a^2+5^2 \\ 5^2(\sqrt[]{3})^2=a^2+25 \\ 25\cdot3=a^2+25 \\ 75-25=a^2 \\ \sqrt[]{50}=a \\ \sqrt[]{25}\cdot\sqrt[]{2}=a \\ 5\sqrt[]{2}=a \end{gathered}

By definition:


\sin (angle)=\frac{\text{opposite}}{\text{hypotenuse}}

Considering angle A, the opposite side is 5√2 and the hypotenuse is 5√3. Substituting with this information, we get:


\begin{gathered} \sin A=\frac{5\sqrt[]{2}}{5\sqrt[]{3}} \\ \sin A=\frac{\sqrt[]{2}}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ \sin A=\frac{\sqrt[]{2\cdot3}}{(\sqrt[]{3})^2} \\ \sin A=\frac{\sqrt[]{6}}{3} \end{gathered}

Considering angle B, the opposite side is 5 and the hypotenuse is 5√3. Substituting with this information, we get:


\begin{gathered} \sin B=\frac{5}{5\sqrt[]{3}} \\ \sin B=\frac{1}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ \sin B=\frac{\sqrt[]{3}}{3} \end{gathered}

By definition:


\cos (angle)=\frac{\text{adjacent}}{\text{hypotenuse}}

Considering angle A, the adjacent side is 5 and the hypotenuse is 5√3. Substituting with this information, we get:


\cos A=\frac{5}{5\sqrt[]{3}}=\frac{\sqrt[]{3}}{3}

Considering angle B, the adjacent side is 5√2 and the hypotenuse is 5√3. Substituting with this information, we get:


\cos B=\frac{5\sqrt[]{2}}{5\sqrt[]{3}}=\frac{\sqrt[]{6}}{3}

User Quinn Taylor
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories