Ok, so
Here we have the following segments:
We want to find the value of the measure of GE.
Notice that we have that:
![\begin{gathered} HG=13x-993 \\ HF=3x-129 \\ GE=3x-185 \\ FE=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l4wudcv9mr3wtm58ce1zsqy1c793mnvt33.png)
If we look at the graph, we can see that the measure of GF can be found if we substract HF and HG. Right?
Therefore, GF will be:
![\begin{gathered} GF=HF-HG \\ GF=3x-129-(13x-993) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/16m1x9xgz9o7wb21ytmch3sf0ylhti4e5s.png)
Multiplying the sign per the terms inside the brackets, we got that:
![\begin{gathered} GF=3x-129-13x+993 \\ GF=-10x+864 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrlbtklu1m9xmkol57bjr4txohn9u1jvo5.png)
And, the segment GE can be found if we sum GF and FE.
This is:
![\begin{gathered} GE=GF+FE \\ GE=-10x+864+4 \\ GE=-10x+868 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/av6pp5pl4o19twwvk6pqqmp6umktoxab9h.png)
Now, we can see that GE is also given by the equation 3x - 185. So, we could equal both equations:
![\begin{gathered} GE=GE \\ -10x+868=3x-185 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gyod2xytd72olv5ptifix06ztp4t4fhryx.png)
And if we solve this equation for x:
![\begin{gathered} -10x-3x=-185-868 \\ -13x=-1053 \\ x=(-1053)/(-13)=81 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/irrvg84k70qbo8w1wy5wqcanctd9xknrpc.png)
Now, we know that x=81.
To find the measure of GE, we just replace x=81 in any of both equations given for GE. We could replace in the second one because it is easier.
![GE=3x-185=3(81)-185=58](https://img.qammunity.org/2023/formulas/mathematics/college/4smfpl4du6utidr8gc20wl3lcaau65e5qf.png)
Therefore,
![GE=58](https://img.qammunity.org/2023/formulas/mathematics/college/un1hp6e3ytw05gk7s1si199z5ou5avrqup.png)