In radians, it is 2/5 radians
In degrees, it is 11.5 degrees
Step-by-step explanation:
radius = 5 feet
arc length = 2 feet
The formula relating the radius and the arc length is given as:
![\begin{gathered} s\text{ = r}\theta \\ \text{where s = arc length} \\ r=radius\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/46lg53u1e8c5dy1tshj99xkmi7pba2vyq0.png)
![\begin{gathered} \text{substitute the values:} \\ \text{ 2 = 5}\theta \\ \text{divide through by 5:} \\ (2)/(5)\text{ = }\theta \\ \\ In\text{ radians, }\theta\text{ = 2/5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lx4828ep0gx9yh76cdxz8qdrhwx5998jjq.png)
We will convert from radians to degrees:
![\begin{gathered} 1\text{ }\pi\text{ rad = 180 degr}ees \\ (2)/(5)rad\text{ = }(2)/(5)\text{ rad}*\frac{180\text{ degr}ees}{\pi\text{ rad}} \\ \\ =\text{ }\frac{36\text{ degr}ees}{\pi\text{ }} \\ =\text{ }11.5\text{ degr}ees \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oqjcjn60usskek76df7zxz9zjwqx1hdhjo.png)
In radians, it is 2/5 radians
In degrees, it is 11.5 degrees