![S=\mleft\lbrace\frac{5+\sqrt[]{217}}{12},\frac{5-\sqrt[]{217}}{12}\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/18xrjxpvnyfam7z7gxdasrpohqta2wxe4l.png)
1) We can start solving that, by rewriting it into the standard form:
6x² -5x = 8 Subtract 8 from both sides
6x² -5x -8 = 0
2) Since a≠1 and the coefficients are not divisible by each other, let's use the Quadratic Formula:
Δ =b² - 4ac
Δ =25 -4(6)(-8)
Δ = 25 +192
Δ = 217
![\begin{gathered} x=\frac{-b\pm\sqrt[]{\Delta}}{2a}=\frac{5\pm\sqrt[]{217}}{12}= \\ x_1=\frac{5+\sqrt[]{217}}{12} \\ x_2=\frac{5-\sqrt[]{217}}{12} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i714rmnvtvhjt89nixvqnuix2otgetl1dk.png)
3) Hence the answers are above, x_1 and x_2 are the roots.