The major axis measures 12 in, and the minor axis measures 10 in. The equation of an ellipse centered at (h, k) is given by the expression:
![((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/l0626bn68eeug6hf6kdo2ks0r7t63wrkx6.png)
Where a is the measure of the semi-major(minor) axis, and b is the measure of the semi-minor(major) axis. In this case, the semi-major axis is horizontal (because it is 12 inches wide), so:
![\begin{gathered} a=(12)/(2)=6 \\ b=(10)/(2)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qnq5nooe7sjyvx5f8oxopjagg220wq536e.png)
Now, if the center is at (0, 48), then h = 0 and k = 48. Using these values on the equation of the ellipse:
![\begin{gathered} ((x-0)^2)/(6^2)+((y-48)^2)/(5^2)=1 \\ \Rightarrow(x^2)/(36)+((y-48)^2)/(25)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x6alpy1kql12hswv608vnf0ihon3yti1n2.png)