46.5k views
4 votes
Complete the table for the arithmetic sequence.

User Raghavan
by
7.5k points

1 Answer

3 votes

Airthemetic Sequence : arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.

It express as :


a_n=a_1+(n-1)d

In the given question the 88 term is ( 25)

Substitute the value in the expression of n terms


\begin{gathered} a_n=a_1+(n-1)d \\ \text{for : n =25, a}_n=88,a_1=(-8) \\ a_n=a_1+(n-1)d \\ 88=(-8)+(25-1)d \\ 88=-8+24d \\ 88+8\text{ =24d} \\ 24d=96 \\ d=(96)/(24) \\ d=4 \end{gathered}

In the given Airthmetic sequence the constant difference, d = 4

Now for the position of term 8


\begin{gathered} a_n=a_1+(n-1)d \\ \text{for a}_n=8,a_1=(-8),\text{ d =4} \\ 8=-8+(n-1)4 \\ 16=4(n-1) \\ 4=n-1 \\ n=5 \end{gathered}

for n= 5 terms is 8

Now for the term of position 8:


\begin{gathered} a_n=a_1+(n-1)d \\ \text{for n=8, a}_1=(-8),d=4 \\ a_n=-8+(8-1)4 \\ a_n=-8+7*4 \\ a_n=20 \end{gathered}

So, the term with position 8 is 20

Now for the position of term 36 :


\begin{gathered} a_n=a_1+(n-1)d \\ \text{for :a}_n=36,a_1=(-8),\text{ d = 4} \\ 36=-8+(n-1)4 \\ 36+8=4(n-1) \\ 44=4(n-1) \\ n-1=(44)/(4) \\ n-1=11 \\ n=10 \end{gathered}

Thus, for n = 10, an = 36

Now, for the term of position 19


\begin{gathered} a_n=a_1+(n-1)d \\ \text{for n=19, d=4, a}_1=(-8) \\ a_n=-8+(19-1)4 \\ a_n=-8+(18)4 \\ _{}a_n=-8+72 \\ a_n=64 \end{gathered}

Thus at n = 19 the term i 64

Complete the table for the arithmetic sequence.-example-1
User Anne
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories