We have the parabola equation in standard form:
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
and we need to convert it into a vertex form:
![y=A(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/wocki4w264tajt0jv2jhvn2vkjf4k2rkgl.png)
In order to obtain it, we can note that
![f(x)=x^2-10x+74](https://img.qammunity.org/2023/formulas/mathematics/college/flkh8urv4tktt0nenszldhqsjpcfrsi5mc.png)
can be rewritten as
![f(x)=(x-5)^2-25+74](https://img.qammunity.org/2023/formulas/mathematics/college/piqc0grb0vfoatc27mh09vxsemjo0jx6k0.png)
this is because
![(x-5)^2=x^2-10x+25](https://img.qammunity.org/2023/formulas/mathematics/college/puracqu15qj0j08ngand0u6goppwcs77nz.png)
From our last result, we have
![f(x)=(x-5)^2+49](https://img.qammunity.org/2023/formulas/mathematics/college/tbxjop1x6jdviox9s7hp3v44knluufny1x.png)
By comparing this result with the general vertex form, we can note that
![\begin{gathered} A=1 \\ h=5 \\ k=49 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vdpr8saap5ohwddpvh6yo9x97pxtbmozvc.png)
Therefore, the equation in vertex form is given by:
![f(x)=(x-5)^2+49](https://img.qammunity.org/2023/formulas/mathematics/college/tbxjop1x6jdviox9s7hp3v44knluufny1x.png)
with vertex:
![(h,k)=(5,49)](https://img.qammunity.org/2023/formulas/mathematics/college/86tt7kive65nhz0lxglb0lpxgzk4qheke6.png)