Looking at angle G, it inscribes the arc FH, which is a diameter of the circle.
Since an inscribed angle measures half the inscribed arc (and arc FH measures 180°), angle G measures 90°.
Now, let's calculate angle F:
![\begin{gathered} F+G+H=180\\ \\ F+90+48=180\\ \\ F+138=180\\ \\ F=180-138\\ \\ F=42° \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iyu7o8h88bwc4bzgftrcjecjbnnazbjiw2.png)
Arc GH is inscribed by the angle F, so we have:
![\begin{gathered} F=(1)/(2)GH\\ \\ 42=(1)/(2)GH\\ \\ GH=2\cdot42\\ \\ GH=84° \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o3kk4rnc7ovhs8vszkwhkqvgj1v8qozewq.png)
So the indicated arc measures 84°.