This is an equation of a parabola (quadratic) of the form:
![ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/knmog89o03f8dx9fluvbqb64q9rt61y6kp.png)
According to the equation, the values of the constants are:
a = 6
b = -1
c = -4
The max value of a parabolic function occurs at:
![x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/7gr846x3106wifbv8ib3mo7x3lghpti0f2.png)
We substitute and find:
![\begin{gathered} x=-(-1)/(2(6)) \\ x=(1)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3utp1g22cduaehx2b0ez6xvnh0kjv2fya0.png)
Then, if u plug in that number into the function, you will get the max/min value:
![\begin{gathered} f((1)/(12))=6((1)/(12))^2-(1)/(12)-4 \\ =6((1)/(144))-(1)/(12)-4 \\ =(1)/(24)-(1)/(12)-4 \\ =(1-1(2)-4(24))/(24) \\ =(1-2-96)/(24) \\ =-(97)/(24) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e736kx2sjh9uehzwcd53ajb9nq4qox6l5s.png)
So, the extrema value is at:
![((1)/(12),-(97)/(24))](https://img.qammunity.org/2023/formulas/mathematics/college/fkcvtkylu9fl1pizuyof4z5gg7nxebn1st.png)
Also, this is a minimum.
If a > 0 , we have a minimum
If a < 0, we have a max.
Since a = 6 which is greater than 0, so the answer is minimum.