141k views
4 votes
Find the surface area of the figure.Assume the cylinder is closed at both ends. Use 3.14 for π and round to the nearest hundredth, if necessary.

Find the surface area of the figure.Assume the cylinder is closed at both ends. Use-example-1
User Erk
by
8.1k points

2 Answers

4 votes

Assuming the cylinder is closed at both ends, the surface area of the figure is equal to 150.72 square miles.

In Mathematics and Geometry, the surface area of a cylinder can be calculated by using this mathematical equation (formula):

Surface area of a cylinder, SA = 2πrh + 2π
r^2

Where:

  • h represents the height.
  • r represents the radius.

By substituting the given parameters into the formula for the surface area (SA) of a cylinder, we have the following;

Surface area of a cylinder, SA = 2πrh + 2π
r^2

Surface area of a cylinder, SA = (2 × 3.14 × 3 × 5) + 2 × 3.14 ×
3^2

Surface area of a cylinder, SA = 94.2 + 56.52

Surface area of a cylinder, SA = 150.72 square miles.

User Sukru
by
8.2k points
4 votes

The surface area of a cylinder is the sum of the lateral area and the area of both ends (or lids).

The surface area can be calculated with the formula:


SA=2\pi r^2+2\pi rh

Where r is the radius and h is the height.

The cylinder drawn in the figure has r=3 mi and h=5 mi.

Applying the formula:


\begin{gathered} SA=2\cdot3.14\cdot3^2+2\cdot3.14\cdot3\cdot5 \\ SA=150.72mi^2 \end{gathered}

The surface area of the figure is 150.72 square mi

User Loonis
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories