To obtain the vertex of the parabola, we are going to re-write the given parabola equation into its vertex form.
The vertex form of a parabola is given as:
![\begin{gathered} y=a(x-h)^2+k \\ \text{where (h,k) is the vertex} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lj1ahehequfotoaei7u2a67jta8rnmzgnz.png)
Thus, by completing the square of the given parabola equation, we have:
![\begin{gathered} y=x^2+4x-3 \\ y=x^2+4x+4-4-3 \\ y=(x+2)^2-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ihy9zvfvrzyr3383qrt1v2q8510dw0f92.png)
Comapring this equation with the vertex form of a parabola;
Hence, the vertex of the parabola is:
![(h,k)=(-2,-7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4365t9gzf9hdswuwfqwhnsn60uxr731wbz.png)
The focus of a parabola is at the point;
![Focus=(h,k+(1)/(4a))](https://img.qammunity.org/2023/formulas/mathematics/college/sss8cmgs6b32ticel5boqcqr6h6b3u4fmi.png)
The parabola obtained opens up. An alternative equation for a parabola that opens up is:
![y-k=4a(x-h)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7ml7auy2rtomkev9l3nnujsoptoqr3yt7p.png)
![\begin{gathered} \text{ Rewriting }y=(x+2)^2-7\text{ to fit this form leads to} \\ y+7=4a(x+2)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/66bw1qahgsspc8seh4vrdsggzucng13wy7.png)
We must find the value of a that makes the equation true at any point (x,y).
Suppose x=1;
![\begin{gathered} y=x^2+4x-3 \\ y=1^2+4(1)-3 \\ y=1+4-3 \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rfyookdmpbq44i8755miudzh8vvj8b92fg.png)
![\begin{gathered} y-k=4a(x-h)^2 \\ 2-(-7)=4a(1-(-2))^2 \\ 2+7=4a(1+2)^2 \\ 9=4a*3^2 \\ 9=36a \\ a=(9)/(36) \\ a=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1nugrfyi3ojsoodvvjayctnx2vs6z2j11r.png)
Hence, the focus of the parabola is:
![\begin{gathered} F=(h,k+(1)/(4a)) \\ F=(-2,\text{ -7+}(1)/(4)) \\ F=(-2,-(27)/(4)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/510j6velwsjx19svh73w7dp9srwz3y4d7v.png)
The directrix is:
![y=-(29)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/me2fq6w71px8kpjrava8ml2od8f1v4y9xb.png)