182k views
1 vote
Which system of linear equations can be solved using the information below?-314.1--2014-1-22 208-192|Ax| ==

Which system of linear equations can be solved using the information below?-314.1--2014-1-22 208-192|Ax-example-1
User Dave Chen
by
8.2k points

1 Answer

5 votes

Given


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

To find:

The system of equation.

Step-by-step explanation:

It is given that,


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

That implies,

Since,


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

Then,


AX=B\Rightarrow\begin{bmatrix}{2} & {-3} \\ {12} & {8}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{20} & {} \\ {-192} & \end{bmatrix}

Therefore,

The system of equation is,


\begin{gathered} 2x-3y=20 \\ 12x+8y=-192 \end{gathered}

Hence, the answer is option A).

User Michael Geier
by
9.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories