182k views
1 vote
Which system of linear equations can be solved using the information below?-314.1--2014-1-22 208-192|Ax| ==

Which system of linear equations can be solved using the information below?-314.1--2014-1-22 208-192|Ax-example-1
User Dave Chen
by
4.1k points

1 Answer

5 votes

Given


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

To find:

The system of equation.

Step-by-step explanation:

It is given that,


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

That implies,

Since,


\begin{gathered} |A_x|=det\begin{bmatrix}{20} & {-3} \\ {-192} & {8}\end{bmatrix} \\ |A_y|=det\begin{bmatrix}{2} & {20} \\ {12} & {-192}\end{bmatrix} \end{gathered}

Then,


AX=B\Rightarrow\begin{bmatrix}{2} & {-3} \\ {12} & {8}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{20} & {} \\ {-192} & \end{bmatrix}

Therefore,

The system of equation is,


\begin{gathered} 2x-3y=20 \\ 12x+8y=-192 \end{gathered}

Hence, the answer is option A).

User Michael Geier
by
5.0k points